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We consider one-dimensional models for the irreversible adsorption of large molecules on a solid sur-
face. The study is motivated by recent simulations of the diffusion random sequential adsorption process
in which hard spheres diffuse above an adsorbing surface. We first consider a generalized parking pro-
cess in which the rate of deposition of a particle within a gap formed by two preadsorbed spheres de-
pends on the width of the gap, but is uniform within a gap. We demonstrate simply that all generalized
parking processes, including simple random sequential adsorption (RSA), have the same jamming limit
coverage. As a by-product of this analysis, we obtain a recursion formula for the saturation coverage in
gaps of finite length. In the second part of the paper, we consider a parking process in which the rate of
deposition within a gap varies with position as well as the gap width. To apply the model to diffusion
random sequential adsorption (DRSA) we solve the steady state diffusion equation to find the probability
density function for the creation of a free interval of width 4 upon adsorption of a particle in a gap of
size h’. The resulting jamming limit coverage, 6., =0.7506, is in good agreement with the numerical

simulations of the DRSA process (0.7496), but larger than that of simple RSA (0.7476).

PACS number(s): 82.20.Wt, 68.10.Jy, 81.15.Lm

I. INTRODUCTION

When a solid surface is exposed to a suspension of latex
spheres, an adsorption process often ensues and the sur-
face becomes coated with at least a monolayer of parti-
cles. This example is illustrative of a number of similar
phenomena underlying many natural and industrial pro-
cesses including filtration, water cleansing, biofouling,
and chromatography. In developing quantitative descrip-
tions of these adsorption processes, one must account for
the transport process of the particles from the bulk to the
surface, the interactions between the surface and the ad-
sorbing particles, and the interactions between the ad-
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sorbed particles and those in the vicinity of the surface.
The latter, which result in a rapidly diminishing rate of
adsorption with increasing surface coverage, are difficult
to account for theoretically. Furthermore, since the ad-
sorption of large molecules and microparticles is often ir-
reversible, one cannot necessarily use the methods of
equilibrium statistical mechanics.

Recently, there has been considerable interest in the
random sequential adsorption (RSA) process and its pos-
sible application to adsorption phenomena. The idea of
this model is very simple: particles are added randomly
and sequentially to a surface. No overlap is permitted
and no relaxation via surface diffusion or desorption is
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possible. From various computer simulation studies it is
known that the saturation coverage of configurations of
hard spheres generated by an RSA process is 54.7% [1,2].
This value agrees rather well with the experimental esti-
mate of Onoda and Liniger [3] for the saturation cover-
age of latex spheres on a silica surface (55% coverage),
suggesting that RSA is at least a reasonable starting point
for the development of theoretical descriptions.

However, that the agreement between experiment and
simulation is so good is actually rather puzzling, in view
of the simplicity of the RSA process. In particular, the
algorithm as described above incorporates the transport
mechanism of the particles from the bulk to the surface
very crudely: if an incoming particle overlaps with an
adsorbed particle, the incoming particle is rejected and a
new attempt is made in a new position completely un-
correlated with the last. This is an unlikely mechanism,
particularly at low densities where an initially rejected
particle is still likely to find room on the surface in a
nearby location.

A more realistic model, which specifically includes a
transport mechanism, has recently been proposed in
which the deposition is represented as a diffusion adsorp-
tion of hard spheres [4—-6]. In simulations of diffusion-
random sequential adsorption (DRSA) adsorbed
configurations of hard spheres are built up by a number
of independent random walks from the bulk to the sur-
face. Each trajectory is initiated by placing the sphere
center randomly in a place at a height of 3 diameter
above the adsorbing surface. The sphere either eventual-
ly adsorbs, or it reaches an upper plane (at 3 particle di-
ameters), in which case it is discarded. Remarkably, the
structure, as characterized by the radial distribution
function, and coverage of jammed configurations generat-
ed by this process were found to be indistinguishable
from those generated by the simple RSA processes [5,6].
At all lower coverages, however, the structures generated
by the two processes are different.

In order to explain this result, Tarjus and Viot [7] con-
sidered a generalized parking process in which particles
deposit on an infinite line. Like the simple car parking
problem [8], the rate of deposition per unit length of the
line is uniform within a gap formed by two adsorbed par-
ticles. However, in contrast to simple RSA, the rate of
deposition per unit length depends on the size of the
gaps. This feature is incorporated to reflect the fact that
in DRSA a diffusing particle is channeled down a narrow
gap. By considering the kinetics of gap formation and
destruction, Tarjus and Viot demonstrated that jammed
configurations produced by a generalized parking process
are independent of the rate of deposition and hence are
identical to those of the one-dimensional (1D) RSA pro-
cess on a line [7]. In the first part of this paper, we
present a simpler and more intuitive proof of this
equivalence.

Subsequent to the developments described above, a
careful simulation study of 1D DRSA [13] revealed that
the saturation coverage of this process (0.7529) is slightly,
but significantly, larger than that of simple 1D RSA
(0.747). The reason for this discrepancy was clearly evi-
dent in the simulation results: the diffusion process leads
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FIG. 1. Illustration of the adsorption process. A disk is in-
serted in a gap of length A to produce two smaller gaps.

to a nonuniform distribution of particles within the avail-
able gaps. In Sec. III of this paper, we extend the gen-
eralized parking process to allow for this possibility and
compute the saturation coverage which results from an
adsorption rate found from an approximate solution of
the steady state diffusion equation.

II. GENERALIZATION OF THE RSA MODEL

In the generalized car parking process, disks of diame-
ter 1 are randomly and sequentially deposited onto an
infinite line. Unlike the standard parking problem, the
rate of deposition per unit length of the surface is not a
constant. Rather, it depends on the interval between two
preadsorbed disks in which one tries to insert a new disk.
If G(h,t)dh is the number of gaps between h and h +dh
at time ¢ and k(h) is the rate of adsorption per unit
length in an interval of length A, then one may write
down a governing kinetic equation for the adsorption
process:

aG (h,t)

————=—k(h)(h —1)G (h,t)
ot

+2 7 k(h")G(h',1)dh" . (1)
h+1

It is implicit in this equation that newly arriving disks
are distributed uniformly within the gap of length 4, i.e.,
all positions within the gap are equiprobable. In simple
RSA, k(h)=H(h —1) where H (x) is the Heaviside unit
step function. The introduction of the factor k(h) is
merely to account for the fact that, in a diffusion process,
small gaps are occupied at a faster rate per unit length
than larger ones because the disks colliding with the fixed
particles can diffuse down a channel with acts as a funnel
as shown by Schaaf, Johner, and Talbot [4] for a two-
dimensional model.

Although Tarjus and Viot [7] have already proved that
the properties (structure and coverage) of the jammed
state are independent of k (%), we present here a simpler
explanation of this result. Let us consider the problem of
disks adsorbing irreversibly on a line segment of length &
(see Fig. 1). Following the usual RSA rule, we wish to
determine the average number of disks that are in this
gap after an infinite time, N (k). A key observation is
that insertion of one disk into the gap at length A pro-
duces two additional gaps of length A’ and A —h'—1.
Therefore, one may write the following recursion formu-
la:

Nw(h):l+2f0h_1Nw(h')P(h,h’)dh’ , @)
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where P(h,h’) is the probability that insertion of a disk
into the gap of length 4 produces gaps of length 4’ and
h —h'—1. Now in the generalized parking problem, of
which RSA is a specific case,

P(h,h')=1/(h —1), (3)

since all positions of the new disk are equiprobable. Thus
the final state of the system does not depend on the ad-
sorption rate, k (4), and we conclude that all generalized
parking problems, including simple RSA, have the same
jamming limit (0.747 in one dimension).

Equation (2) has an interesting by-product. Clearly, we
know the initial solutions,

NY(n)=0, 0<h<1, (4)
N®m)=1, 1<h<2, (5)

where NV (h) means N (h)ati —1=<h <i.
Now, representing explicitly the piecewise function,

2 1
B (p)y= e (Vg '
NS (h) l+h 1fONm(h )dh

2 2N mnan
+o g [ NS (hdh

+————f 'NED(hOdR', k—1<h <k .
(6)
In particular,
N®(k =1+ f N (h")dh'+.
+————f NV (h)dR )
1t follows, therefore, that
"’(h)—l—l—h [N k=1 —1)—1]
_— (k—1) ’ ’ >
+h_1fk 2N (hhdh', k=2. (8

Using this form, one can find the following analytic ex-
pressions:

NOm=3"3  s<po3, ©)
n—1

Higher order functions may be conveniently and accu-
rately computed numerically using the recurrence rela-
tion. The mean saturation coverage of particles adsorbed
in a confined gap of size 4 is

N, (h)
W .

The result is shown in Fig. 2. From Rényi’s original
work [8], one has the following asymptotic relation:

(11)

6,(h)=

900(00)—900(}1)"'—]11- . (12)
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6.(h)

FIG. 2. Saturation coverage of the RSA process in a gap of
size h.

Figure 3 shows the complete linear relation between
the mean saturation coverage of particles adsorbed on a
confined gap of size h, 6 ,(/) and the inverse of the size of
gap, h when A is greater than about S. Thus the intersec-
tion point of the extrapolation line (represented by dotted
line) with the line 1/A =0 is consistent with the satura-
tion coverage of RSA model, 6 (©)=0.74759... . The
recursion formula (12) may find application in the
description of adsorption on heterogeneous or step sur-
faces.

III. NONUNIFORM DEPOSITION OF DRSA

In this section, we describe a general one-dimensional
model with nonuniform addition rates. We introduce
k (h’,h) to denote the probability per unit length and per
unit time that deposition of a disk in a gap of length
h'>1 produces gaps of length 4 and A’ —h —1 (the posi-
tion of the center of the new disk within the gap is thus
x =h +1 relative to the center of the disk on the left of
the gap).

The governing kinetic equation for the adsorption pro-
cess is (see Fig. 4):

1'0 T T T T
0.9r 1
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07F 1

6.(h)

0.6 1
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FIG. 3. Asymptotic relation of the mean saturation coverage
of particles adsorbed on a confined gap of size A, 8,(h) with
respect to the gap length % (represented by solid line). Extrapo-
lation of the data within the range of 5<% <11 (represented by
dotted line) shows the 6.(c )=0.747 603+0.000013 when

h—oo.
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FIG. 4. Illustration of the governing equation for the nonuni-
form deposition of DRSA.

aG (h,t) _ | 3G (A,t) + dG (h,t)
ot ot loss ot creation
=—ky(h)G(h,t)

+ [ dn'G )
X[k(h',h)+k(h',h'—h —D] . (13)

If the disks are identical, we expect that k (A’,4) is a sym-

metric function, k(h’,hA)=k(h’,hA'—h —1). Thus the
above equation can be simplified as follows:
oG (h,t)
o —ko(h)G (h,t)
+2[ % ah'G(h' 0k (h',h) . (14)
h+1

This equation together with the initial condition
G (h,t =0)=0, and the normalization condition

J, dn(1+m)G (n,n=1 (15)

determines completely G (h,t). The function ky(h) is the
total rate at which gaps of length / are destroyed by the
addition of a new particle

kotm= [ " dn'kc (h,h") (16)

and clearly ko(h)=0if h <1.

The solution of (14) would provide information about
the distribution of free gaps along the entire history of
the process. However, the distribution in the jammed
state can be obtained without knowing the detailed time
evolution. This is possible because the final distribution
of disks does not depend on the precise time at which a
new disk is added to a given gap, but only on the position
at which that disk is added. Only the probability of ob-
taining different small gaps from wider ones is relevant,
and not the kinetics of the process. As a consequence, a
time independent equation can be derived for the total
number of gaps of given length created during the pro-
cess.

Let n (h)dh be the number of gaps of length between h
and /& +dh that have been created per unit length at any
time along the process. Using the balance equation we
have, for A >0,
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_ =, |3G(h,)
ni= fo @ 9t Jcreation
=2[ " dn'k(h,) [ Tdt Gh',1) (17

The integration of (17) with respect to 4’ includes only
gaps with A’> 1. All these gaps are destroyed at the end
of the process and therefore one has, for ' > 1,

dG (h,t)

n(hy=— [ “dr | <=

loss

=ko(h") [ "dt G(h',1) . (18)

Substituting (18) into (17) gives the integral equation val-
id for h >0,

n(m=2[" dh'P(h',k)n(h"). (19)

The quantity P(h’,h) gives the probability density that
the first particle arriving at an interval of length A’
creates two new free intervals of length Aand ' —h —1:

_ k(h',h)

P(h',h
h'sh =20

(20)
From the definition of ky(h), Eq. (16), this function must
satisfy the normalization condition

S an pam=1. 1)

Equation (19) is a advanced integral equation from
which, in principle, it is possible to obtain n(h) if
P(h',h) is known. It expresses the fact that the total
number of gaps of length s can be computed from the
number of gaps with length 4’ >k + 1 and the probability
of obtaining an interval on length A from an interval of
length h’. That equation must be supplemented by a nor-
malization condition that can be obtained from the nor-
malization of G (h,t). Noting that, for t — «, G(h,t)—0
for h > 1 and G (h,t)—n(h) for h <1, Eq. (15) reduces in
this limit to

Jdn(+mnm=1. (22)

Once n (h) has been determined the final coverage can be
obtained as

0.=['annn . (23)

In the case of simple RSA, P(h',h)=1/(h'—1). One
has then

n(h’)

i (24)

m=2[" dn’

n(h) f h+1 h
This equation can be exactly solved by the Laplace

transformation (see the Appendix). The result for n (h),

n(h)=2f0ws exp [—-hs—-Zfosdt(l—e_')/t ds , (25)

coincides for 4 <1 with the known expression for the
density of gaps at the jamming limit [9]. The expression
first found by Rényi is obtained for 6. On the other
hand, the limiting case of nonuniform deposition is the
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ballistic deposition (BD) process in which the depositing
particles follow the path of steepest descent by rolling
over adsorbed particles [10]. In this case, the probability
density function is the sum of two 8 functions which have
peaks at the two ends of a gap. From this probability
density function, it is possible to calculate the saturation
coverage of BD and that of the generalized ballistic depo-
sition (GBD) process [11] that interpolates between RSA
and BD. Unfortunately, it is not possible to solve analyti-
cally more general models, like DRSA. In this case, a
numerical solution of Eq. (19) must be envisaged.

An iterative method can be used in order to solve Eq.
(19) numerically. Starting from a first approximation of
n(h), ny(h), a sequence of new approximations is gen-
erated by the recursion formula

nk+1(h>=2fh°:ldh'P(h',h)nk(h') . (26)

Note that, in order to determine the function n;(h) for
h >0, it is sufficient to know the values of n, _;(h) for
h > 1; these values can be obtained from the values of
n; _,(h) for h >2 and, after k steps, one needs the values
of ny(h) for h >k only. Then, a good approximation to
n(h) in the interval of interest, 0 <A <1, can be obtained
after a sufficient number of iterations from a first approxi-
mation valid for large values of A.

To obtain this first approximation, some assumption
about the deposition process on large intervals is needed.
Then, we assume that the rate of arrival of new particles
to points in a gap of length A’ >>1, k(h',h), depends on
the arrival point as a consequence of the interaction be-
tween the arriving particles and the particles already ad-
sorbed at the ends of the gap. If these interactions decay
sufficiently fast with distance, the importance of this in-
homogeneity must be very small for large intervals, and
one can approximate P (h',h) by a value independent of &
that, in view of the normalization (15), must be
P(h',h)=1/(h'—1)=~1/h'. Then, to leading order in
h 1, Eq. (19) is satisfied by n (h)~Kh 2.

The recursion formula (26) can taken be integrated nu-
merically in order to obtain successive approximations to
n (h) starting from ny(h)=1/h2 After k iterations an ap-
proximation of order k, n;(h), will be obtained. This
function is not normalized, because the condition (23) has
not yet been taken into account. The corresponding ap-
proximation to the coverage at the jamming limit can be
obtained as

tdh n, (h)
ok = Joh e 27)

 [ldh (1 hn(h)

To obtain the rate of arrival of Brownian disks at any
point of the line (see Fig. 5), it is necessary to solve the
diffusion equation for the probability distribution of the

position of the center of the new diffusing particle,
Y(r,0),

V2w=0, (28)

where the assumption of the quasisteady state is applied,
with an adsorbing boundary along the line,

¥Y=0 atz=0, (29)
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FIG. 5. Illustration of the diffusion of a Brownian disk at the
distance r away from a preadsorbed disk. .S and P are reflecting
and adsorbing boundaries, respectively. ‘

and reflecting boundaries at the exclusion surfaces of the
preadsorbed disks:

o

—=0 atr=1. (30)

ar
Far from the surface, we assume a uniform flux of incom-
ing particles, J=—J_7 in Cartesian coordinates and

J,=J, cosl, Jyg=J , sinf in polar coordinates,
J% =J*+J%=constant as r— oo . (31)

Then, the rate of arrival of new disks at a given point de-
pends on the distribution of previously adsorbed disks on
the entire line. Nevertheless, it is natural to assume that
only the nearest disks, i.e., those located at the ends of
the free gap, have a noticeable influence.

If only one disk has been adsorbed, the steady solution
of the diffusion equation is, using polar coordinates cen-
tered at the center of the fixed disk,

Y(r,0)=J (r+1/r)cosb, r>1 (32)

from which one obtains the rate of arrival of new disks
at a point at distance r from the center, J(r)|,—,
=—D(8V¥/3z),-o=J,(1+1/r%). The flux of disks in-
creases in the vicinity of the origin (» > 1) as a conse-
quence of reflecting from the fixed disk.

Now, in the absence of disks, J =J . If two disks are
present, we assume as a first approximation that the devi-
ations from this value produced by each disk are indepen-
dent and can be added. Therefore, the approximation to
J(r) should be J (r)=~1+1/r}+1/r3, r, and r, being the
distances to the centers of each disk. After normalization
one finds

C oy — h'
Py(h%h) (h'—1)(h'+2)
X[1+(h+1)"24+(h'—h)"2) . (33)

Then, a first approximation to the DRSA process is ob-
tained using P, as valid for any value of 4’ and 4 in Eq.
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FIG. 6. Comparison of probability density P(h,h’) calculat-
ed from Eq. (33) with the Monte Carlo simulation result ob-
tained from Senger et al. [13]. (a) h =4, (b) h =9.

(19). This approximation P;(h’,h) is compared with the
DRSA results obtained from Senger et al. [13] (see Fig.
6). Even though there is a slight discrepancy at each side
of gap, this first approximation still shows good agree-
ment with the DRSA results. The numerical computa-
tion of using (26), (27), and (33) leads to a value of the
final coverage 6.,=0.75065, slightly greater than the
RSA results, 0.74759. .. . The recursion relation (2) and
(11) together with the above first approximation (33) can
also give us the saturation coverage of this process. As
we did previously in case of RSA, we plot 0 _(h) with
respect to the inverse of A: see Fig. 7. From the extra-
polation of this curve to 1/h =0, we obtain 6
=0.750621+0.000022 confirming that both methods
give the same coverage values. Once we know the func-
tional form of P(h',h) of any model, we can obtain its
saturation coverage with either procedure. Integration
and extrapolation with (2), (11), and (12) seems to be rath-

1.0 T T T T

09f b
0.8 1
= 07 .
0.8F B

0.5 ]

0.4‘ . 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
1/h

FIG. 7. Asymptotic behavior of the mean saturation cover-
age of particles adsorbed on a confined gap of size h,0,(h)
(solid line). Extrapolation of the data within the
range of 5<h <11 (represented by dotted line) yields 0 ()
=0.750621+0.000 022.
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er easier than numerical calculation by using (26) and (27)
without loss of accuracy.

In order to assess the accuracy of the independent disk
assumption used alone, we have also constructed the ex-
act solution of the deposition problem in the presence of
two disks. We take the x axis as the line passing through
the centers of the adsorbed disks, and the y axis as its per-
pendicular through the center of the gap (Fig. 8). In this
coordinate system, the center of the fixed particles is lo-
cated at x =xL /2, where L =h +1 is the separation.
The center of the diffusing particle is excluded from a re-
gion of radius unity around these points.

The bipolar coordinates £,7 are defined through
ﬁéﬂ ] , (34)

x +iy =ic cot

where c is a free parameter, to be specified.

The curves 7= constant are semicircles centered at
x =c coth”, y =0, and radius r =c /sinhy. For n=1=a,
two of these curves coincide with the circumferences of
the exclusion disks, of radius unity and located at
x==xL/2,y=0. This happens if cosha=L /2 and
¢ =sinha=V/(L/2)*—1.

The diffusion equation now reads as

2 2
2:; 2; =0. (35)
The boundary conditions are
V=0 at £=0,7, (36)
and
%—;I]i=0 at n==*a . (37)

Therefore the problem is separable. The normalized
result for the particle flux in the region between the disks
is given by the convergent series

1 © __l)n+lne—na
=— |1+2(1+ .
J e +2( 0051“7)"§1 sinhno coshy
(38)
y
E=0
x

FIG. 8. Two adsorbed particles displayed in the bipolar coor-
dinate system.
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This J is exactly the function P,. It depends on
h'=L —1 through the coefficients @ and ¢ and on h
through the coordinate m of the arriving point.
(x =ctanhn/2and h =L /2—x —1).

Then, one finds that the total rate of deposition in an
interval of length h is substantially modified for
h =1 << 1, but for such small gaps the relative probability
of arrival at different points is nearly uniform. After in-
serting (28) into (26) and computing numerically, one
finds a value of the coverage 0, ~0.75102, only slightly
different from the result obtained with P;,0  ~0.750 65.
Thus even a first approximation can be enough to esti-
mate the jamming coverage of the DRSA process.

Figure 9 represents the number density n (k) of gaps
with size 0<h <1 at the jamming limit which are ob-
tained from two different methods: the numerical calcu-
lation of (26) (solid line) and simulation in a lattice system
(triangular points) [13]. The gap density functions ob-
tained from both methods show good agreement over the
whole gap sizes. The numerical simulations, which con-
sist of the coverage of 2500 lines of length equal to 50 di-
ameters after diffusion on a lattice with a lattice parame-
ter of 0.005, gave a value of 6_=0.7529+0.0010 [13].
The discrepancy with the result of the calculation is
probably due to the fact that the theory presented here
assumes continuous Brownian trajectories of moving par-
ticles, whereas the simulations are performed for discrete
trajectories of particles following lattice spacings. This
discrepancy can be corrected by finite-size scaling [Eq.
(28) in [14]] of the results for various lattice constants

1
(R /a)’

where [ is the length of the adsorbing segment, R is the
radius of a particle, and a is the lattice spacing (see Fig.
10). The jamming coverage at R/a—>o is
0,(I/R =100, 0 ) =0.7496+0.0014, which shows good
agreement with the value obtained from the approxima-
tions (33) and (38). However, since the simulations per-

0.(1/R,0)—0_(1/R,R /a)~ (39)

40 T T T

FIG. 9. Gap distribution function at the jamming limit. The
solid line was obtained from the second approximation (38) in
the bipolar coordinate system, while the triangular points were
obtained from the simulation in a lattice system.

1.0 T T T T

100,a/R)

0.8 b

6.(L/R=

0.7 b

O.Sf i I L .
0.0 0.2 0.4 0.6 0.8 1.0
a/R

FIG. 10. Finite size scaling of the jamming coverages of the
DRSA simulations [13] with the change of the lattice spacings.
The solid line shows a least-squares fit of the scaling relation
(39).

formed for a finite system to which periodic boundary
conditions were applied, while the theory presented here
assumes an infinite line, the simulation value still shows a
small deviation from the theoretical value. We can guess
that the coverage of the finite line depends on the system
size and approaches the asymptotic limit when increasing
the system size.

IV. CONCLUSION

The mechanism by which the particles arrive at the
surface in irreversible adsorption processes will, in gen-
eral, affect the kinetics and the saturation coverage. In
this paper, we have attempted to develop some insight
into this dependence by studying one-dimensional models
of the adsorption process. If the rate of deposition de-
pends only on the size of the gap between two pread-
sorbed particles, the jamming coverage is the same as in
simple RSA (0.74759. . . in 1D), but if the rate of deposi-
tion varies with the position of the adsorbing particle in
the gap, the jamming coverage can be considerably
different from that of simple RSA. As an extreme case,
ballistic deposition (BD) [10] has a singular component of
the deposition rate at each end of the available gaps (plus
a uniform rate within) which results from the rolling
mechanism, and has a saturation coverage of 0.808. . . .

We have developed a general kinetic equation for
nonuniform deposition processes (14) and recursion for-
mulas for the saturation coverage, (2) and (26). In
DRSA, the nonuniformity is induced by the diffusion of
the adsorbing molecules. The deposition probability in
the DRSA model has been calculated at two levels of ap-
proximation. In the simplest, the influence of the two
disks bounding a gap on the diffusing particle is taken as
an additive. The saturation coverage obtained from this
approach does not differ greatly from that corresponding
to the exact analytic solution in the presence of two disks.
These results are also consistent with numerical simula-
tions of the DRSA process, if proper allowance
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(throughout a scaling relation) is taken of the finite lattice
of the simulation. Moreover, the position dependent flux
of the particles obtained from the simple approximate
solution (38) of the diffusion equation is consistent with
the data obtained from the numerical simulation of
DRSA. The saturation coverage calculated from the
theory, Egs. (26), (27), and (33) is consistent with the
value obtained from numerical simulations of the DRSA
process if one property accounts for the finite lattices of
the simulations.

If hydrodynamic interactions are included in the
DRSA process, the distribution is more uniform than
with diffusion alone [15] because of the enhanced mobili-
ty parallel to the surface. Hence, one would expect the
generalized parking process (with a uniform distribution)
to be a good description in this case. In a BD process,
which takes into account the hydrodynamic interactions
[16], it has been shown that while the jamming coverage
(0.797) does not change significantly, the local structure is
strongly affected by the hydrodynamic interactions and
the rate of deposition still shows strong nonuniform
behavior. Although in this paper the only nonuniform
deposition process studied has been DRSA, our method
can be applied to other, more realistic models. The exten-
sion of this method is under way.

Since our method has been applied to a 1+1 dimen-
sional system, a direct comparison with the experimental
results is not possible. However, we can make a few com-
ments about some relevant experimental studies.
Wojtaszczyk et al. [12] used an image analysis technique
to examine the structure of particle deposits and showed
that the BD model could be considered as an acceptable
starting point for the adsorption of rather large particles
(radius >2 pm). For smaller particles (radius <0.5 pm),
the RSA model provides a good description of the experi-
mental results (Fig. 53 in [17]). However, we expect that
the extension of our model to 2+ 1 dimensions will per-
mit an improved description of the structure and kinetics
of the deposition process.
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APPENDIX: SOLUTION OF INTEGRAL EQ. (24)

In the case of RSA,

n(=2[" dn’ nih) (A1)
differentiating and rearranging yields

—%l—[hn(h)]—n(h)=—2n(h 1), (A2)
Let

n(h)= [ “dse MF(s). (A3)

0

Since, if F(0)=

hni)= [ “dse "F'(s) , (A4)

0
after substituting (A3) and (A4) into (A2), we obtain
d * —hs g _ ® —hs
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=—2["dse "FI5F(s) . (AS5)
0
After differentiating the first term of (AS),
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0

Thus we finally obtain the following differential equation:

sF'(s)+F(s)=2e °F(s) . (A7)
The general solution of (A7) is
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s exp . .
Hence,
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Then, the normalization condition (22) implies
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FIG. 1. Illustration of the adsorption process. A disk is in-
serted in a gap of length A to produce two smaller gaps.



FIG. 4. Illustration of the governing equation for the nonuni-
form deposition of DRSA.



FIG. 5. Illustration of the diffusion of a Brownian disk at the
distance r away from a preadsorbed disk. S and P are reflecting
and adsorbing boundaries, respectively.



FIG. 8. Two adsorbed particles displayed in the bipolar coor-
dinate system.



